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Abstract The hypre software library [15] is a collection of high performance pre-
conditioners and solvers for large sparse linear systems of equations on massively
parallel machines. This paper investigates the scaling properties of several of the
popular multigrid solvers and system building interfaces in hypre on two modern
parallel platforms. We present scaling results on over 100,000 cores and even solve
a problem with over a trillion unknowns.

1 Introduction

The need to solve increasingly large, sparse linear systems of equations on parallel
computers is ubiquitous in scientific computing. Such systems arise in the numeri-
cal simulation codes of a diverse range of phenomena, including stellar evolution,
groundwater flow, fusion plasmas, explosions, fluid pressures in the human eye, and
many more. Generally these systems are solved with iterative linear solvers, such
as the conjugate gradient method, combined with suitable preconditioners, see e.g.
[17, 19].

A particular challenge for parallel linear solver algorithms is scalability. An ap-
plication code is scalable if it can use additional computational resources effectively.
In particular, in this paper we focus on weak scalability, which requires that if the
size of a problem and the number of cores are increased proportionally, the comput-
ing time should remain approximately the same. Unfortunately, in practice, as sim-
ulations grow to be more realistic and detailed, computing time may increase dra-
matically even when more cores are added to solve the problem. Recent machines
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with tens or even hundreds of thousands of cores offer both enormous computing
possibilities and unprecedented challenges for achieving scalability.

The hypre library was developed with the specific goal of providing users with
advanced parallel linear solvers and preconditioners that are scalable on massively
parallel architectures. Scalable algorithms are essential for combating growing com-
puting times. The library features parallel multigrid solvers for both structured
and unstructured problems. Multigrid solvers are attractive for parallel computing
because of their scalable convergence properties. In particular, if they are well-
designed, then the computational cost depends linearly on the problem size, and
increasingly larger problems can be solved on (proportionally) increasingly larger
numbers of cores with approximately the same number of iterations to solution. This
natural algorithmic scalability of the multigrid methods combined with the robust
and efficient parallel algorithm implementations in hypre result in preconditioners
that are well-suited for large numbers of cores.

The hypre library is a vital component of a broad array of application codes both
at and outside of Lawrence Livermore National Laboratory (LLNL). For example,
the library was downloaded more than 1800 times from 42 countries in 2010 alone,
approaching nearly 10,000 total downloads from 70 countries since its first open
source release in September of 2000. The scalability of its multigrid solvers has
a large impact on many applications, particularly because simulation codes often
spend the majority of their runtime in the linear solve.

The objective of this paper is to demonstrate the scalability of the most popu-
lar multigrid solvers in hypre on current supercomputers. We present scaling stud-
ies for conjugate gradient, preconditioned with the structured-grid solvers PFMG,
SMG, SysPFMG, as well as the algebraic solver BoomerAMG, and the unstructured
Maxwell solver AMS. Note that previous investigations beyond 100,000 cores fo-
cused only on the scalability of BoomerAMG on various architectures and can be
found in [5, 2].

The paper is organized as follows. First we provide more details about the overall
hypre library in Section 2 and the considered multigrid linear solvers in Section 3.
Next, in Section 4, we specify the machines and the test problems we used in our
experimental setup. We present and discuss the corresponding scalability results in
Section 5, and we conclude by summarizing our findings in Section 6.

2 The hypre library

In this section we give a general overview of the hypre library. More detailed infor-
mation can be found in the User’s Manual available on the hypre web page [15].
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2.1 Conceptual interfaces

We first discuss three of the so-called conceptual interfaces in hypre, that provide
different mechanisms for describing a linear system on a parallel machine. These in-
terfaces not only facilitate the use of the library, but they make it possible to provide
linear solvers that take advantage of additional information about the application.

The Structured Grid Interface (Struct) is a stencil-based interface that is most
appropriate for scalar finite-difference applications whose grids consist of unions of
logically rectangular (sub)grids. The user defines the matrix and right-hand side in
terms of the stencil and the grid coordinates. This geometric description, for exam-
ple, allows the use of the PFMG solver, a parallel algebraic multigrid solver with
geometric coarsening, described in more detail in the next section.

The Semi-Structured Grid Interface (SStruct) is essentially an extension of
the Structured Grid Interface that can accommodate problems that are mostly struc-
tured, but have some unstructured features (e.g., block-structured, composite or
overset grids). It can also accommodate multiple variables and variable types (e.g.,
cell-centered, edge-centered, etc.), which allows for the solution of more general
problems. This interface requires the user to describe the problem in terms of struc-
tured grid parts, and then describe the relationship between the data in each part
using either stencils or finite element stiffness matrices.

The Linear-algebraic Interface (IJ) is a standard linear-algebraic interface that
requires that the users map the discretization of their equations into row-column
entries in a matrix structure. Matrices are assumed to be distributed across P MPI
tasks in contiguous blocks of rows. In each task, the matrix block is split into two
components which are each stored in compressed sparse row (CSR) format. One
component contains the coefficients that are local to the task, and the second, which
is generally much smaller than the local one, contains the coefficients whose col-
umn indices point to rows located in other tasks. More details of the parallel matrix
structure, called ParCSR, can be found in [10].

2.2 Solvers

The hypre library contains highly efficient and scalable specialized solvers as well
as more general-purpose solvers that are well-suited for a variety of applications.

The specialized multigrid solvers use more than just the matrix to solve cer-
tain classes of problems, a distinct advantage provided by the conceptual interfaces.
For example, the structured multigrid solvers SMG, PFMG, and SysPFMG all take
advantage of the structure of the problem. As a result, these solves are typically
more efficient and scalable than a general-purpose solver alternative. The SMG and
PFMG solvers require the use of the Struct interface, and SysPFMG requires the
SStruct interface.

For electromagnetic problems, hypre provides the unstructured Maxwell solver,
AMS, which is the first provably scalable solver for definite electromagnetic prob-
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lems on general unstructured meshes. The AMS solver requires matrix coefficients
plus the discrete gradient matrix and the vertex coordinates which can be described
with the IJ or SStruct interface.

For problems on arbitrary unstructured grids, hypre provides a robust parallel
implementation of algebraic multigrid (AMG), called BoomerAMG. BoomerAMG
can be used with any interface (currently not supported through Struct), as it only
requires the matrix coefficient information.

The hypre library also provides common general-purpose iterative solvers, such
as the GMRES and Conjugate Gradient (CG) methods. While these algorithms are
not scalable as stand-alone solvers, they are particularly effective (and scalable)
when used in combination with a scalable multigrid preconditioner.

2.3 Considerations for large-scale computing

Several features of the hypre library are required to efficiently solve very large prob-
lems on current supercomputers. Here we describe three of these features: support
for 64-bit integers, scalable interface support for large numbers of MPI tasks, and
the use of a hybrid programming model.

64-bit integer support has recently been added in hypre. This support is needed
to solve problems in ParCSR format with more than 2 billion unknowns (previously
a limitation due to 32-bit integers). To enable the 64-bit integer support, hypre must
be configured with the --enable-bigint option. When this feature is turned on,
the user must pass hypre integers of type HYPRE Int, which is the 64-bit integer
(usually a ’long long int’ type in C). Note that this 64-bit integer option converts all
integers to 64-bit, which does affect performance and increases memory use.

Scalable interfaces as well as solver algorithms are required for a code utilizing
hypre to be scalable. When using one of hypre’s interfaces, the problem data is
passed to hypre in its distributed form. However, to obtain a solution via a multigrid
method or any other linear solver algorithm, MPI tasks need to obtain nearby data
from other tasks. For a task to determine which tasks own the data that it needs, i.e.
their communication partners or neighbors, some information regarding the global
distribution of the data is required. Storing and querying a global description of the
data, which is the information detailing which MPI task owns what data or the global
partition, is either too costly or not possible when dealing with tens of thousands or
more tasks. Therefore, to determine inter-task communication in a scalable manner,
we developed new algorithms that employ an assumed partition to answer queries
through a type of rendezvous algorithm, instead of storing global data descriptions.
This strategy significantly reduces storage, communication, and computational costs
for the solvers in hypre and improves scalability as shown in [4]. Note that this
optimization requires configuring hypre with the --no-global-partition option
and is most beneficial when using tens of thousands of tasks.

A hybrid programming model is used in hypre. While we have obtained good
scaling results in the past using an MPI-only programming model, see e.g. [11],
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with increasing numbers of cores per node on multicore architectures, the MPI-only
model is expected to be increasingly insufficient due to the limited off-node band-
width and decreasing amounts of memory per core. Therefore, in hypre we also
employ a mixed or hybrid programming model which combines both MPI and the
shared memory programming model OpenMP. The OpenMP code in hypre is largely
used in loops and divides a loop among k threads into roughly k equal-sized portions.
Therefore, basic matrix and vector operations, such as the matrix-vector multiply or
dot product, are straightforward, but the use of OpenMP within other more complex
parts of the multigrid solver algorithm, such as in parts of the setup phase (de-
scribed in Section 3), may be non-trivial. The right choice for hybrid MPI/OpenMP
partitioning in terms of obtaining optimal performance is dependent on the specific
target machine’s node architecture, interconnect, and operating system capabilities
[5]. See [5] or [2] for more discussion on the performance of BoomerAMG with a
hybrid programming model.

3 The multigrid solvers

As mentioned in Section 1, multigrid solvers are algorithmically scalable, mean-
ing that they require O(N) computations to solve a linear system with N variables.
This desirable property is obtained by cleverly utilizing a sequence of smaller (or
coarser) grids, which are computationally cheaper to compute on than the original
(finest) grid. A multigrid method works as follows. At each grid level, a smoother is
applied to the system, which serves to resolve the high-frequency error on that level.
The improved guess is then transferred to a smaller, or coarser, grid, the smoother
is applied again, and the process continues. The coarsest level is generally chosen
to be a size that is reasonable to solve directly, and the goal is to eliminate a signif-
icant part of the error by the time this coarsest level is reached. The solution to the
coarse grid solve is then interpolated, level by level, back up to the finest grid level,
applying the smoother again at each level. A simple cycle down and up the grid is
referred to as a V-cycle. To obtain good convergence, the smoother and the coarse-
grid correction process must complement each other to remove all components of
the error.

A multigrid method has two phases: the setup phase and the solve phase. The
setup phase consists of defining the coarse grids, interpolation operators, and coarse-
grid operators for each of the coarse-grid levels. The solve phase consists of per-
forming the multilevel cycles (i.e., iterations) until the desired convergence is ob-
tained. In the scaling studies, we often time the setup phase and solve phase sep-
arately. Note that while multigrid methods may be used as linear solvers, they are
more typically used as preconditioners for Krylov methods such as GMRES or con-
jugate gradient.

The challenge for multigrid methods on supercomputers is turning an efficient
serial algorithm into a robust and scalable parallel algorithm. Good numerical prop-
erties need to be preserved when making algorithmic changes needed for paral-
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lelism. This non-trivial task affects all aspects of a multigrid algorithm, including
coarsening, interpolation, and smoothing.

In the remainder of this section, we provide more details for the most commonly-
used solvers in hypre for which we perform our scaling study.

3.1 PFMG, SMG, and SysPFMG

PFMG [1, 12] is a semicoarsening multigrid method for solving scalar diffusion
equations on logically rectangular grids discretized with up to 9-point stencils in 2D
and up to 27-point stencils in 3D. It is effective for problems with variable coef-
ficients and anisotropies that are uniform and grid-aligned throughout the domain.
The solver automatically determines the “best” direction of semicoarsening, but the
user may also control this manually. Interpolation is determined algebraically. The
coarse-grid operators are also formed algebraically, either by Galerkin or by the
non-Galerkin process described in [1]. The latter is available only for 5-point (2D)
and 7-point (3D) problems, but maintains these stencil patterns on all coarse grids,
reducing cost and improving performance. Relaxation options are either weighted
Jacobi or red/black Gauss-Seidel. The solver can also be run in a mode that skips
relaxation on certain grid levels when the problem is (or becomes) isotropic, further
reducing cost and increasing performance.

PFMG also has two constant-coefficient modes, one where the entire stencil is
constant throughout the domain, and another where the diagonal is allowed to vary.
Both modes require significantly less storage and can also be somewhat faster than
the full variable-coefficient solver, depending on the machine. The variable diagonal
case is the most effective and flexible of the two modes. The non-Galerkin options
here are similar to the variable case, but maintain the constant-coefficient format on
all grid levels.

SMG [20, 7, 9, 12] is also a semicoarsening multigrid method for solving scalar
diffusion equations on logically rectangular grids. It is more robust than PFMG,
especially when the equations exhibit anisotropies that vary in either strength or
direction across the domain, but it is also much more expensive per iteration. SMG
coarsens in the z direction and uses a plane smoother. The xy plane solves in the
smoother are approximated by employing one cycle of a 2D SMG method, which
in turn coarsens in y and uses x-line smoothing. The plane and line solves are also
used to define interpolation, and the solver uses Galerkin coarse-grid operators.

SysPFMG is a generalization of PFMG for solving systems of elliptic PDEs.
Interpolation is defined only within the same variable using the same approach as
PFMG, and the coarse-grid operators are Galerkin. The smoother is of nodal type
and solves all variables at a given point simultaneously.
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3.2 BoomerAMG

BoomerAMG [14] is the unstructured algebraic multigrid (AMG) solver in hypre.
AMG is a particular type of multigrid method that is unique because it does not
require an explicit grid geometry. This attribute greatly increases the types of prob-
lems that can be solved with multigrid because often the actual grid information
may not be known or the grid may be highly unstructured. Therefore, in AMG the
“grid” is simply the set of variables, and the coarsening and interpolation processes
are determined entirely based on the entries of the matrix. For this reason, AMG is
a rather complex algorithm, and it is challenging to design parallel coarsening and
interpolation algorithms that combine good convergence, low computational com-
plexity as well as low memory requirements. See [25], for example, for an overview
of parallel AMG. Note that the AMG setup phase can be costly, compared to that
of a geometric multigrid method. Classical coarsening schemes [8, 18] have led to
slow coarsening, especially for 3D problems, resulting in large computational com-
plexities per V-cycle, increased memory requirements and decreased scalability. In
order to achieve scalable performance, one needs to use reduced complexity coars-
ening methods, such as HMIS and PMIS [23], which require distance-two inter-
polation operators, such as extended+i interpolation [22], or even more aggressive
coarsening schemes, which need interpolation with an even longer range [24, 26].
The parallel implementation of long range interpolation schemes generally involves
much more complicated and costly communication patterns than nearest neighbor
interpolation. Additionally, communication requirements on coarser grid levels can
become more costly as the stencil size typically increases with coarsening, which re-
sults in MPI tasks having many more neighbors (see, e.g., [13] for a discussion). The
AMG solve phase consists largely of matrix-vector multiplies and the application of
a (typically) inexpensive smoother, such as hybrid (symmetric) Gauss-Seidel, which
applies sequential (symmetric) Gauss-Seidel locally on each core and uses delayed
updates across cores. Note that hybrid smoothers depend on the number of cores
as well as the distribution of data across tasks, and therefore one cannot expect to
achieve exactly the same results or the same number of iterations when using dif-
ferent configurations. However, the number of iterations required to converge to the
desired tolerance should be fairly close.

3.3 AMS

The Auxiliary-space Maxwell Solver (AMS) is an algebraic solver for electromag-
netic diffusion problems discretized with Nedelec (edge) finite elements. AMS can
be viewed as an AMG-type method with multiple coarse spaces, in each of which
a BoomerAMG V-cycle is applied to a variationally constructed scalar/vector nodal
problems. Unlike BoomerAMG, AMS requires some fine-grid information besides
the matrix: the coordinates of the vertices and the list of edges in terms of their
vertices (the so-called discrete gradient matrix), which allows it to be scalable and
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robust with respect to jumps in material coefficients. More details about the AMS
algorithm and its performance can be found in [16].

4 Experimental setup

For the results in this paper, we used version 2.7.1a of the hypre software library. In
this section, we describe the machines and test runs used in our scaling studies.

4.1 Machine descriptions

The Dawn machine is a Blue Gene/P system at LLNL. This system consists of
36,864 compute nodes, and each node contains a quad-core 850 MHz PowerPC 450
processor, bringing the total number of cores to 147,456. All four cores on a node
have a common and shared access to the complete main memory of 4.0 GB. This
guarantees uniform memory access (UMA) characteristics. All nodes are connected
by a 3D torus network. We compile our code using IBM’s C and OpenMP/C com-
pilers and use IBM’s MPICH2-based MPI implementation.

The Hera machine is a multicore/multi-socket Linux cluster at LLNL with 864
compute nodes connected by Infiniband network. Each compute node has four sock-
ets, each with an AMD Quadcore (8356) 2.3 GHz processor. Each processor has its
own memory controller and is attached to a quarter of the node’s 32 GB memory.
While a core can access any memory location, the non-uniform memory access
(NUMA) times depend on the location of the memory. Each node runs CHAOS 4, a
high-performance computing Linux variant based on Redhat Enterprise Linux. Our
code is compiled using Intel’s C and OpenMP/C compiler and uses MVAPICH for
the MPI implementation.

4.2 Test runs

Because we are presenting a scaling study, and not a convergence study, we chose
relatively simple problems from a mathematical point of view. However, these prob-
lems are sufficient for revealing issues with scaling performance.

3D Laplace: A 3D Laplace equation with Dirichlet boundary conditions, dis-
cretized with seven-point finite differences on a uniform Cartesian grid.

3D Laplace System: A system of two 3D Laplace equations as above, with weak
inter-variable coupling at each grid point. Each Laplacian stencil had a coefficient
of 6 on the diagonal and -1 on the off-diagonals, and the inter-variable coupling
coefficient was 10−5.
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3D Electromagnetic Diffusion: A simple 3D electromagnetic diffusion problem
posed on a structured grid of the unit cube. The problem has unit conductivity and
homogeneous Dirichlet boundary conditions and corresponds to the example code
ex15 from the hypre distribution.

We use the notation PFMG-n, CPFMG-n, SMG-n, SysPFMG, AMG-n, and
AMS-n to represent conjugate gradient solvers preconditioned respectively by PFMG,
constant-coefficient PFMG, SMG, SysPFMG, BoomerAMG, and AMS, where n
signifies a local grid of dimension n×n×n on each core. We use two different pa-
rameter choices for PFMG (and CPFMG), and denote them by appending a ’-1’ or
’-2’ to the name as follows:

• PFMG-n-1 - Weighted Jacobi smoother and Galerkin coarse-grid operators;
• PFMG-n-2 - Red/black GS smoother, non-Galerkin coarse-grid operators, and

relaxation skipping.

For AMG, we use aggressive coarsening with multipass interpolation on the finest
level, and HMIS coarsening with extended+i interpolation truncated to at most 4
elements per row on the coarser levels. The coarsest system is solved using Gaussian
elimination. The smoother is one iteration of symmetric hybrid Gauss-Seidel. For
AMS, we use the default parameters of ex15 plus the `∗1-GS smoother from [3]
(option -rlx 4).

For PFMG, CPFMG, SMG, and AMG, we solve the 3D Laplace problem with
global grid size N = np× np× np, where P = p3 is the total number of cores.
For SysPFMG, we solve the 3D Laplace System problem with a local grid size of
403. For AMS, we solve the 3D Electromagnetic Diffusion problem, where here n3

specifies the local number of finite elements on each core.
In the scaling studies, P ranged from 64 to 125,000 on Dawn and 64 to 4096 on

Hera, with specific values for p given as follows:

• p = 4,8,12,16,20,24,28,32,36,40,44,48,50 on Dawn; and
• p = 4,8,12,16 on Hera.

For the hybrid MPI/OpenMP runs, the same global problems were run, but they
were configured as in the following table.

Problem size per Number of
Machine Threads MPI task MPI tasks

Dawn (smp) 4 2n×2n×n p/2× p/2× p
Hera (4x4) 4 n×2n×2n p× p/2× p/2

Hera (1x16) 16 2n×2n×4n p/2× p/2× p/4

5 Scaling Studies

In this section, we present the scaling results. We first comment on the solver per-
formance and conclude the section with comments on the times spent to set up the
problems using hypre’s interfaces. For all solvers, iterations were stopped when the
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L2 norm of the relative residual was smaller than 10−6. The number of iterations are
listed in Table 1.
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Fig. 1 PFMG results on Dawn for two different local problem sizes, 163 (left) and 403 (right). The
top and bottom rows use one box to describe the local problem, while the second row splits the
local problem into 64 = 4×4×4 boxes. The top two rows use the assumed partition algorithm and
the bottom row uses the global partition. Setup and solve phase times are given for two different
parameter choices.

In Figure 1, we give results for PFMG using MPI only. Since communication
latency speeds are several orders of magnitude slower than MFLOP speeds on to-
days architectures (Dawn included), communication costs tend to dominate for the
smaller PFMG-16 problems. Because of this, the setup phase is slower than the
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solve phase, due primarily to the assumed partition and global partition compo-
nents of the code. The global partition requires O(P logP) communications in the
setup phase, while the current implementation of the assumed partition requires
O((logP)2) communications (the latter is easier to see in Figure 2). It should be
possible to reduce the communication overhead of the assumed partition algorithm
in the setup phase to O(logP) by implementing a feature for coarsening the box
manager in hypre (the box manager serves the role of the distributed directory in
[4]). For PFMG-40 with the assumed partition, the setup phase is cheaper than the
solve phase for the single box case, and roughly the same cost for the multi-box
case. For both multi-box cases, describing the data with 64 boxes leads to additional
overhead in all phases, but the effect is more pronounced for the setup phase. The
problem setup uses the Struct interface and is the least expensive component.
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Fig. 2 PFMG results on Dawn comparing MPI and hybrid MPI/OpenMP for parameter choice 2
and two different local problem sizes, 163 (top) and 403 (bottom). The left column uses one box
to describe the local problem and the right column uses 64. The assumed partition is used in all
cases, and the results are plotted on a log scale.

In Figure 2, we give results for PFMG, comparing MPI to hybrid MPI/OpenMP.
With the exception of the setup phase in the single box cases, the hybrid results are
slower than the MPI-only results due most likely to unnecessary thread overhead
generated by the OpenMP compiler (the Hera results in Figure 5 show that our
hybrid model can be faster than pure MPI). In the single box cases, the O((logP)2)



12 Baker,Falgout,Kolev,Yang

communications in the assumed partition algorithm dominates the time in the setup
phase, so the pure MPI runs are slower than the hybrid runs due to the larger number
of boxes to manage. This scaling trend is especially apparent in the PFMG-16-2
plot. For the multi-box cases, thread overhead is multiplied by a factor of 64 (each
threaded loop becomes 64 threaded loops) and becomes the dominant cost.

The constant-coefficient CPFMG solver saves significantly on memory, but it was
only slightly faster than the variable-coefficient PFMG case with nearly identical
scaling results. The memory savings allowed us to run CPFMG-200-2 to solve a
1.049 trillion unknown problem on 131,072 cores (64× 64× 32) in 11 iterations
and 83.03 seconds. Problem setup took 0.84 seconds and solver setup took 1.10
seconds.
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Fig. 3 SMG-40 and SysPFMG results on Dawn using the assumed partition algorithm.

In Figure 3, we show results for SMG-40 and SysPFMG. We see that SMG is a
much more expensive solver than PFMG, albeit more robust. We also see that the
setup phase scales quite poorly, likely due to the O((logP)3) number of coarse grids
and our current approach for building a box manager on each grid level. See [12]
for more discussion on expected scaling behavior of SMG (and PFMG).

For SysPFMG, we see that the scaling of both the setup and solve phases are not
flat, even though the iteration counts in Table 1 are constant. However, this increase
is the same increase seen for PFMG-40 at 85,184 cores, so we expect the times
to similarly decrease at larger core counts. The problem setup uses the SStruct

interface and is the least expensive component.
Figure 4 presents the performance of BoomerAMG-CG on Dawn. The two top

figures show the performance obtained when using MPI only and the effect of using
32-bit integers versus 64-bit integers. The 32-bit version could only be used to up
to 32,768 cores for the 403 Laplace problem. We also include results that were
obtained using the Sequoia benchmark AMG [21], which is a stand-alone version
of BoomerAMG, in which only those integers that are required to have a longer
format were converted, an approach that was unfortunately too work extensive to be
applied to all of hypre. The benchmark results are very close to the 32-bit integer
results.
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Fig. 4 AMG results on Dawn for two different local problem sizes, 163 (left) and 403 (right). The
top figures show setup and solve times for the 32-bit version of hypre, the 64-bit version (big),
and the AMG Sequoia benchmark (bench), using MPI only and assumed partitioning. The middle
figures show times using the hybrid programming model MPI/OpenMP and assumed partitioning
and include the problem setup times. The bottom figures use MPI only and global partitioning.

The two bottom figures show the effect of using a global partition when setting up
the communication pattern and its linear dependence on the number of MPI tasks.
The problem setup uses the IJ interface and takes very little time compared to solve
and setup.

The middle figures show timings obtained using a hybrid OpenMP/MPI pro-
gramming model with one MPI task per node using 4 OpenMP threads on Dawn.
On Dawn, the use of OpenMP for AMG leads to larger run times than using MPI
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only and is therefore not recommended. While the solve phase of BoomerAMG
is completely threaded, portions of it, like the multiplication of the transpose of
the interpolation operator with a vector cannot be implemented as efficiently using
OpenMP as MPI with our current data structure. Also, portions of the setup phase,
like the coarsening and part of the interpolation, are currently not threaded, which
also negatively affects the performance when using OpenMP.

0

0.5

1

1.5

2

2.5

3

3.5

0 1000 2000 3000 4000

Se
co

n
d

s

Number of Cores

PFMG-16-1 on Hera

setup (16x1)

solve (16x1)

setup (4x4)

solve (4x4)

setup (1x16)

solve (1x16)0

0.5

1

1.5

2

2.5

3

3.5

4

0 1000 2000 3000 4000
Se

co
n

d
s

Number of Cores

PFMG-40-1 on Hera

setup (16x1)

solve (16x1)

setup (4x4)

solve (4x4)

setup (1x16)

solve (1x16)

0

1

2

3

4

5

6

7

8

9

0 1000 2000 3000 4000

Se
co

n
d

s

Number of Cores

AMG-16 on Hera

setup (16x1)

solve (16x1)

setup (4x4)

solve (4x4)

setup (1x16)

solve (1x16)0

2

4

6

8

10

12

14

16

18

0 1000 2000 3000 4000

Se
co

n
d

s

Number of Cores

AMG-40 on Hera

setup (16x1)

solve (16x1)

setup (4x4)

solve (4x4)

setup (1x16)

solve (1x16)

Fig. 5 Setup and solve times on Hera for PFMG and AMG, using an MPI only programming model
(16x1), and two hybrid MPI/OpenMP programming models using 4 MPI tasks with 4 OpenMP
threads each (4x4) and using 1 MPI task with 16 OpenMP threads (1x16) per node.

On Hera, the use of a hybrid MPI/OpenMP versus an MPI only programming
model yields different results, see Figure 5. Since at most 4096 cores were available
to us, we used the global partition. We compare the MPI only implementations with
16 MPI tasks per node (16x1) to a hybrid model using 4 MPI tasks with 4 OpenMP
threads each (4x4), which is best adapted to the architecture, and a hybrid model
using 1 MPI task with 16 OpenMP threads per node (1x16). For the smaller problem
with 163 unknowns per core, we obtain the worst times using MPI only, followed
by the 4x4 hybrid model. The best times are achieved using the 1x16 hybrid model,
which requires the least amount of communication, since communication is very
expensive compared to computation on Hera and communication dominates over
computation for smaller problem sizes. The picture changes for the larger problem
with 403 unknowns per core. Now the overall best times are achieved using the 4x4
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hybrid model, which has less communication overhead than the MPI only model,
but is not plagued by NUMA effects like the 1x16 hybrid model, where all memory
is located in the first memory module, causing large access times and contention for
the remaining 12 cores, see also [6].
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Fig. 6 AMS results on Dawn for two different local problem sizes, 163 (left) and 323 (right).
Shown are the problem generation time and the solver setup and solve times. The AMS-32 problem
uses the 64-bit version of hypre.

In Figure 6 we show the scalability results for CG with AMS preconditioner
applied to the constant coefficient electromagnetic diffusion problem described in
the previous section. We consider a coarse (AMS-16) and a 64-bit fine problem
(AMS-32) with parallel setups corresponding to 163 and 323 elements per core. The
respective largest problem sizes were around 1.5 and 12 billion on 125,000 cores.
Both cases were run with the assumed partition version of hypre.

Though not perfect, both the AMS setup and solve times in Figure 6 show good
parallel scalability, especially in the case of AMS-32 where the larger amount of
local computations offsets better the communications cost. The slight growth in
the solve times can be partially explained by the fact that the number of AMS-CG
iterations varies between 9 to 12, for AMS-16, and 10 to 14, for AMS-32.

In Figure 7, we show timings for one iteration (cycle) of a few solvers considered
earlier. This removes the effect of the iteration counts given in Table 1 on the overall
solve times. We see that the cycle time for AMG-40 is only slightly larger than
PFMG-40-1, even though it is a fully unstructured code. This is mainly due to the
dominant cost of communication, but it also suggests that improvements may be
possible in the PFMG computational kernels where we should be able to take better
advantage of structure. PFMG-40-2 is faster than PFMG-40-1 because it maintains
7-pt operators on all grid levels, reducing both communication and computation
costs. AMS-16 is the slowest even though the grid is smaller, because it is solving
a much harder problem that involves essentially four AMG V-cycle plus additional
smoothing. It is interesting to note that all of the curves have almost the same shape,
with a slight increase at 85,184 cores. This is most likely due to a poor mapping
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Fig. 7 Cycle times on Dawn for CG with various multigrid preconditioners.

of the problem data to the hardware, which resulted in more costly long-distance
communication.

We now comment on the performance improvements that can be achieved when
using the struct interface and PFMG or CPFMG over the IJ interface and Boomer-
AMG for suitable structured problems. For the smaller Laplace problem, PFMG-16-
1 is about 2.5 times faster than the 32-version of AMG-16 and the AMG benchmark,
and 3 times faster than the 64-bit version. The non-Galerkin version, PFMG-16-2,
is about 3 to 4 times faster than AMG. For the larger problem, PFMG-40-2 is about
7 times faster than the 64-bit version of AMG and about 5 times faster than the
benchmark.

Finally, we comment on the times it takes to set up the problems via hypre’s
interfaces. Figures 1, 3, and 4 showed that for many problems, the setup takes very
little time compared to setup and solve times of the solvers. Note that the times for
the problem setup via the IJ interface in Figure 4 includes setting up the problem
directly in the ParCSR data structure and then using the information to set up the
matrix using the IJ data interface. Using the IJ interface directly for the problem
setup takes only about half as much time.

The problem generation time in Figure 6 corresponds to the assembly of the
edge element Maxwell stiffness matrix and load vector, as well as the computation
of the rectangular discrete gradient matrix and the nodal vertex coordinates needed
for AMS. These are all done with the SStruct interface, using its finite element
functionality for the stiffness matrix and load vector. Overall, the problem genera-
tion time scales very well. Though its magnitude may appear somewhat large, one
should account that it also includes the (redundant) computation of all local stiffness
matrices, and the penalty from the use of the 64-bit version of hypre in AMS-32.

In Figure 8, we give results for the SStruct interface. The BCube stencil-
based results involve one cell-centered variable and two parts connected by the
GridSetNeighborPart() routine, while the BCube FEM-based results use a node-
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Fig. 8 Scaling results on Dawn for the SStruct interface, comparing the cost of setting up the
SSTRUCT and PARCSR object types, and the cost of using a stencil-based or FEM-based approach.

centered variable. The All-FEM results involve 7 different variable types (all of the
supported types except for cell-centered) and three parts.

For the BCube example, we see that building the SSTRUCT and PARCSR objects
takes about the same time for the stencil-based case, with SSTRUCT taking slightly
longer in the FEM-based case. This is probably due to the extra communication
required to assemble the structured part of the matrix for non-cell-centered variable
types along part boundaries. This difference is even more pronounced in the All-
FEM example. We also see from the BCube example that the FEM-based approach
is more expensive than the stencil-based approach. This is due to the additional cost
of assembling the matrix and also partly due to the fact that the FEM interface does
not currently support assembling a box of stiffness matrices in one call to reduce
overhead.

6 Concluding Remarks

We performed a scaling study of the interfaces and various multigrid solvers of
the hypre library. The results show overall good scaling on the IBM BG/P ma-
chine Dawn at LLNL. We demonstrated that in order to achieve scalability, it is
crucial to use an assumed partition instead of a global partition. On Dawn, using
an MPI only programming model gave generally better timings than using a hy-
brid MPI/OpenMP programming model. However the use of MPI/OpenMP showed
improved times on the multicore/multi-socket Linux cluster Hera at LLNL. In the
future, we plan to investigate how to reduce communication, to improve the use of
threads, as well as to employ more suitable data structures. Our goal is to achieve
good performance on exascale computers, which are expected to have millions of
cores with memories that are orders of magnitudes smaller than on current ma-
chines.
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PFMG- CPFMG-
P 16-1 16-2 40-1 40-2 16-1 16-2 40-1 40-2 SMG-40 SysPFMG
64 9 9 10 10 9 9 9 9 5 9

512 9 10 10 11 9 9 10 10 5 9
1728 10 10 10 11 9 9 10 10 5 9
4096 10 10 10 11 10 9 10 10 5 9
8000 10 11 10 11 10 10 10 10 6 9

13824 10 11 11 11 10 10 10 10 6 9
21952 10 11 11 12 10 10 10 11 6 9
32768 10 11 11 12 10 10 10 10 6 9
46656 10 11 11 12 10 10 10 11 6 9
64000 10 11 11 12 10 10 10 10 6 9
85184 10 11 11 13 10 10 10 10 6 9
110592 10 11 11 13 10 10 10 11 6
125000 10 11 11 13 10 10 10 12 6

AMG- AMS-
P 16 16 (smp) 40 40 (smp) 16 32
64 12 13

512 14 14 15 16 9 10
1728 15 17 10 10
4096 15 15 18 18 10 11
8000 16 19 11 11

13824 17 16 21 20 11 11
21952 17 22 11 12
32768 18 17 22 22 11 13
46656 18 23 11 14
64000 19 18 24 23 12 13
85184 19 24 12 14
110592 19 19 24 24 12 14
125000 19 27 12 14

AMG-16 AMG-40
P (16x1) (4x4) (1x16) (16x1) (4x4) (1x16)
64 12 12 12 13 13 14

512 14 13 14 15 16 16
1728 15 14 14 17 17 18
4096 15 15 15 18 19 20

Table 1 Iteration counts on Dawn (top two tables) and Hera (bottom table). For all solvers, itera-
tions were stopped when the relative residual was smaller than 10−6.
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